Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Journal of Clinical Hepatology ; (12): 64-69, 2024.
Article in Chinese | WPRIM | ID: wpr-1006428

ABSTRACT

ObjectiveTo investigate the protective effect of salidroside against nonalcoholic fatty liver disease (NAFLD) and its mechanism of action. MethodsA total of 24 male KM mice were randomly divided into normal group, HFD group, HFD+blank control group, and HFD+salidroside group, with 6 mice in each group. The mice in the normal group were given normal diet, and those in the other groups were given high-fat diet. After 14 weeks of modeling, the mice were given salidroside 100 mg/kg/day by gavage, and related samples were collected at the end of week 22. Enzyme-linked immunosorbent assay was used to measure the serum levels of related biochemical parameters including alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C); HE staining and NAFLD activity score (NAS) were used to observe the liver histopathology of mice; Western blot was used to measure the changes in the expression of NAMPT, Sirt1, AMPKα, and SREBP1 in liver tissue. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the normal group, the HFD group had obvious steatosis and extensive large lipid droplets in liver tissue, with significant increases in NAS score (P<0.01) and the content of AST, ALT, TG, TC, and LDL-C in peripheral blood (all P<0.05) and a significant reduction in the content of HDL-C (P<0.05), as well as significant reductions in the expression levels of NAMPT, AMPKα, and Sirt1 in liver tissue (all P<0.05) and a significant increase in the expression level of SERBP1 (P<0.01). Compared with the HFD group and the HFD+blank control group, the HFD+salidroside group had reductions in the distribution of vacuolar lipid droplets and intralobular inflammation in liver tissue, alleviation of the ballooning degeneration of hepatocytes, significant reductions in NAS score (P<0.01) and the content of AST, ALT, TG, and LDL-C in peripheral blood (all P<0.05), and a significant increase in the content of HDL-C (P<0.05), as well as significant increases in the expression levels of NAMPT, AMPKα, and Sirt1 in liver tissue (all P<0.05) and a significant reduction in the expression level of SERBP1 (P<0.01). ConclusionSalidroside can significantly improve the pathological state of mice with NAFLD induced by high-fat diet and exert a protective effect against NAFLD by increasing the expression of NAMPT, Sirt1, and AMPKα and reducing the expression of SERBP1.

2.
Rev. nefrol. diál. traspl ; 43(1): 8-8, mar. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1515453

ABSTRACT

RESUMEN El manejo de la hiperfosfatemia de los pacientes con insuficiencia renal crónica en diálisis permanece como un desafío. A pesar de utilizar un enfoque multifacético que incluye la restricción dietética, la remoción de fósforo por la diálisis y el uso de quelantes de fósforo, esta estrategia múltiple no logra reducir los niveles de fósforo en más de 2 mg/dl. El control de fósforo de los pacientes en diálisis es fundamental en razón de la relación monotónica entre los niveles séricos de fosfato y el incremento del riesgo cardiovascular. Por lo tanto, hay una necesidad de explorar nuevas estrategias para reducir los niveles séricos de fosfato a niveles normales. Recientes avances en nuestra compresión de los mecanismos que subyacen a la homeostasis del fósforo sugieren que el transporte gastrointestinal del fósforo podría ser un objetivo. Recientemente se han desarrollado inhibidores de los cotransportadores sodio fosfato del intestino y se ha revalorizado el uso de la nicotinamida, en su formulación de liberación prolongada, que también actuaria por ese mecanismo. También se han drogas como el tenapanor, que inhibiendo el intercambiador sodio/hidrogeno isoforma 3 del enterocito, disminuyen la absorción paracelular de fósforo.


ABSTRACT Management of hyperphosphatemia in patients with chronic renal failure on dialysis remains challenging. Despite using a multifaceted approach that includes dietary restriction, phosphorus removal by dialysis, and phosphate binders, these multiple strategies fail to reduce phosphorus levels by more than 2 mg/dL. Phosphorus control in dialysis patients is essential due to the monotonic relationship between serum phosphate levels and increased cardiovascular risk. Therefore, there is a need to explore new strategies to reduce serum phosphate levels to normal levels. Recent advances in understanding the mechanisms underlying phosphorus homeostasis suggest that the gastrointestinal transport of phosphorus could be a target. Inhibitors of intestinal sodium phosphate cotransporters recently developed, and using of nicotinamide, in its prolonged release formulation, which would also act by this mechanism, has been revalued. There have also been drugs such as tenapanor, which, by inhibiting the isoform three sodium/hydrogen exchanger of the enterocyte, decreases the paracellular absorption of phosphorus.

3.
Chinese journal of integrative medicine ; (12): 448-458, 2023.
Article in English | WPRIM | ID: wpr-982293

ABSTRACT

OBJECTIVE@#To investigate the molecular mechanisms underlying the beneficial effect of electroacupuncture (EA) in experimental models of Alzheimer's disease (AD) in vivo.@*METHODS@#Senescence-accelerated mouse prone 8 (SAMP8) mice were used as AD models and received EA at Yingxiang (LI 20, bilateral) and Yintang (GV 29) points for 20 days. For certain experiments, SAMP8 mice were injected intravenously with human fibrin (2 mg). The Morris water maze test was used to assess cognitive and memory abilities. The changes of tight junctions of blood-brain barrier (BBB) in mice were observed by transmission electron microscope. The expressions of fibrin, amyloid- β (Aβ), and ionized calcium-binding adapter molecule 1 (IBa-1) in mouse hippocampus (CA1/CA3) were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR), Western blot or immunohistochemical staining. The expression of fibrin in mouse plasma was detected by enzyme-linked immunosorbent assay. The expressions of tight junction proteins zonula occludens-1 and claudin-5 in hippocampus were detected by qRT-PCR and immunofluorescence staining. Apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining.@*RESULTS@#Fibrin was time-dependently deposited in the hippocampus of SAMP8 mice and this was inhibited by EA treatment (P<0.05 or P<0.01). Furthermore, EA treatment suppressed the accumulation of Aβ in the hippocampus of SAMP8 mice (P<0.01), which was reversed by fibrin injection (P<0.05 or P<0.01). EA improved SAMP8 mice cognitive impairment and BBB permeability (P<0.05 or P<0.01). Moreover, EA decreased reactive oxygen species levels and neuroinflammation in the hippocampus of SAMP8 mice, which was reversed by fibrin injection (P<0.05 or P<0.01). Mechanistically, EA inhibited the promoting effect of fibrin on the high mobility group box protein 1 (HMGB1)/toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nicotinamide adenine dinucleotide phosphate (NADPH) signaling pathways (P<0.01).@*CONCLUSION@#EA may potentially improve cognitive impairment in AD via inhibition of fibrin/A β deposition and deactivation of the HMGB1/TLR4 and RAGE/NADPH signaling pathways.


Subject(s)
Mice , Humans , Animals , NADP/metabolism , Toll-Like Receptor 4 , HMGB1 Protein/metabolism , Receptor for Advanced Glycation End Products/metabolism , Blood-Brain Barrier/metabolism , Neuroinflammatory Diseases , Electroacupuncture , Alzheimer Disease/therapy , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism
4.
Journal of Experimental Hematology ; (6): 769-776, 2023.
Article in Chinese | WPRIM | ID: wpr-982128

ABSTRACT

OBJECTIVE@#To analyze the expression level of nicotinamide phosphoribosyltransferase (NAMPT ) in bone marrow of multiple myeloma (MM) patients and its correlation with clinicopathological features, clinical efficacy and prognosis.@*METHODS@#RT-qPCR and Western blot were used to detect the expression of NAMPT mRNA and protein in bone marrow mononuclear cells from 85 newly diagnosed MM patients (including 17 relapsed MM patients) and 15 healthy donors, and explore the correlation of the expression of NAMPT gene with clinicopathological features and efficacy. Kaplan-Meier method was used to analyze the effects of NAMPT on progression-free survival (PFS) and overall survival (OS), and univariate and multivariate survival analysis were performed.@*RESULTS@#The median expression level of NAMPT mRNA in bone marrow of newly diagnosed and relapsed MM patients was significantly higher than that of healthy donors (P <0.001). The expression of NAMPT mRNA in relapsed MM patients was significantly higher than that in newly diagnosed MM patients (P <0.001), which was consistent with the expression of NAMPT protein. ISS staging, lactate dehydrogenase and C-reactive protein levels, p53 deletion and the proportion of myeloma cells were increased in high NAMPT expression group compared with low NAMPT expression group (P <0.001). Compared with complete remission group, NAMPT mRNA expression was significantly up-regulated in partial remission group, progression group and relapsed group (P <0.001). The median OS and PFS of patients in high NAMPT expression group was 27.3 and 14.9 months, respectively, which was significantly shorter than 39.1 and 27 months in low NAMPT expression group (P =0.048, P <0.001). Both univariate and multivariate analysis showed that NAMPT expression was correlated with PFS and OS.@*CONCLUSION@#The expression level of NAMPT in newly diagnosed and relapsed MM patients is significantly higher than that in normal controls, and its up-regulation is related to the adverse clinical characteristics, efficacy and prognosis of MM patients. NAMPT is an independent prognostic risk factor of MM.


Subject(s)
Humans , Multiple Myeloma/genetics , Nicotinamide Phosphoribosyltransferase , Prognosis , RNA, Messenger/genetics , Treatment Outcome
5.
Chinese Journal of Biotechnology ; (12): 516-536, 2023.
Article in Chinese | WPRIM | ID: wpr-970389

ABSTRACT

Nicotinamide mononucleotide (NMN) is one of the key precursors of coenzyme Ⅰ (NAD+). NMN exists widely in a variety of organisms, and β isomer is its active form. Studies have shown that β-NMN plays a key role in a variety of physiological and metabolic processes. As a potential active substance in anti-aging and improving degenerative and metabolic diseases, the application value of β-NMN has been deeply explored, and it is imminent to achieve large-scale production. Biosynthesis has become the preferred method to synthesize β-NMN because of its high stereoselectivity, mild reaction conditions, and fewer by-products. This paper reviews the physiological activity, chemical synthesis as well as biosynthesis of β-NMN, highlighting the metabolic pathways involved in biosynthesis. This review aims to explore the potential of improving the production strategy of β-NMN by using synthetic biology and provide a theoretical basis for the research of metabolic pathways as well as efficient production of β-NMN.


Subject(s)
Nicotinamide Mononucleotide/metabolism , NAD/metabolism
6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 89-99, 2023.
Article in Chinese | WPRIM | ID: wpr-978455

ABSTRACT

ObjectiveTo explore the underlying mechanism of modified Zhenwutang in delaying renal interstitial fibrosis in chronic renal failure (CRF) by observing the effects of modified Zhenwutang on the expression of angiotensin Ⅱ (Ang Ⅱ), angiotensin Ⅱ type 1 receptor (AT1R), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), transforming growth factor-β1 (TGF-β1), type I collagen (COL1A1), and type Ⅲ collagen (COL3A1) in the serum and renal tissues of adenine-induced CRF rats. MethodFifty male SPF-grade SD rats were randomly divided into a normal group (n=10) and an experimental group (n=40) using a random number table. After one week of adaptive feeding, the experimental CRF model was established in rats by administering adenine at 150 mg·kg-1·d-1 orally. Three rats from each group were randomly selected to evaluate the model induction. After successful modeling, rats in the experimental group were randomly divided into a model group, low-, medium, and high-dose modified Zhenwutang groups, and a benazepril hydrochloride group, with six rats in each group. The rats were orally administered the corresponding drugs once daily for four weeks. At the end of the first week, 13th week, and 17th week of the experiment, 24 hour urinary protein quantification (24 h-UTP) was measured. At the end of the 17th week, the rats were euthanized, and blood samples were collected from the abdominal aorta for the measurement of total protein (TP), albumin (ALB), creatinine (Cr), and blood urea nitrogen (BUN) in the serum. Enzyme-linked immunosorbent assay (ELISA) was used to measure the expression levels of serum Ang Ⅱ. Hematoxylin-eosin (HE) staining and Masson's trichrome staining were performed to observe the pathological changes in renal tissues. Immunohistochemistry (IHC) was performed to observe the expression of AT1R, NOX4, TGF-β1, COL1A1, and COL3A1. Real-time fluorescence-based quantitative polymerase chain reaction (Real-time PCR) was used to observe the mRNA expression levels of AT1R, NOX4, and TGF-β1. Western blot was conducted to measure the protein expression levels of AT1R, NOX4, and TGF-β1. Result① Compared with the normal group, the model group showed a significant increase in 24 h-UTP (P<0.01). The levels of Cr and BUN in the model group were significantly higher (P<0.01), while the levels of TP and ALB were significantly lower (P<0.01). The serum Ang Ⅱ level in the model group was significantly elevated (P<0.01). The model group exhibited widening of the renal glomerular mesangial space, necrotic glomeruli, increased interstitial width with extensive inflammatory cell infiltration, brownish precipitates blocking the renal tubular lumens, irregular renal tubules, and significant deposition of collagen fibers in the renal interstitium. Additionally, the collagen fibers around the renal vessels, outside the parietal layer of the renal sacs, glomerular basement membrane, and tubular basement membrane increased significantly. The expression of AT1R and NOX4 in the glomeruli and renal tubules of the model group was significantly enhanced, and TGF-β1 expression also significantly increased in the renal tubules. The expression of COL1A1 and COL3A1 in the renal interstitium significantly increased. The mRNA expression of AT1R and TGF-β1 in the model group significantly increased (P<0.01), while NOX4 mRNA expression significantly decreased (P<0.01). The protein expression of AT1R, NOX4, and TGF-β1 was significantly enhanced (P<0.01). ② Compared with the model group, modified Zhenwutang significantly reduced 24h-UTP (P<0.01), decreased levels of Cr and BUN (P<0.01), increased levels of TP and ALB (P<0.01), reduced serum Ang Ⅱ level (P<0.01), alleviated renal pathological damage, reduced expression of AT1R, NOX4, TGF-β1, COL1A1, and COL3A1 in the glomeruli, renal tubules, and renal interstitium, reduced mRNA expression of AT1R and TGF-β1 (P<0.01), increased NOX4 mRNA expression (P<0.01), and weakened protein expression of AT1R, NOX4, and TGF-β1 (P<0.01). The modified Zhenwutang groups showed a significant dose-effect trend. ConclusionModified Zhenwutang may delay renal interstitial fibrosis in CRF rats by reducing the expression of Ang Ⅱ, AT1R, NOX4, and TGF-β1 in the serum and renal tissues, thereby alleviating renal pathological damage, reducing proteinuria, protecting renal function, and delaying the progression of CRF. The modified Zhenwutang group exhibited a dose-effect trend.

7.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 634-640, 2023.
Article in Chinese | WPRIM | ID: wpr-974698

ABSTRACT

Objective@# To explore the preventive effect of nicotinamide (NAM) on cleft palate induced by all-trans retinoic acid (RA), to provide research evidence for the prevention of cleft palate. @*Methods @#The mouse cleft palate model was induced by intragastric administration of 70 mg/kg all-trans retinoic acid at embryonic day 10.5 (E10.5) in the control group. The mouse cleft palate model was treated by caudal vein injection of 20 mg/kg NAM at E8.5 to E13.5 in the experimental group (1). The cleft palate model was treated by caudal vein injection of 40 mg/kg NAM at E8.5-E13.5 in the experimental group (2). The cleft palate of fetal rats was observed by laparotomy on E16.5 and statistically analyzed. Annexin V-FITC/PI double staining was used to detect the apoptosis of mouse embryonic palatal mesenchyme (MEPM) cells treated with RA 1 μmol/L (RA 1 group), NAM 200 μmol/L (NAM 200 group), and both NAM 200 μmol/L and RA 1 μmol/L (NAM 200+RA 1 group) for 24 hours by flow cytometry and the apoptosis rate in groups were compared. Culture without RA or NAM was used as a control. @*Results @# The cleft palate rate in the control group was 98%. The cleft palate rate in experimental group (1) was 87%. There was no significant difference between groups (P>0.05). The cleft palate rate in the experimental group (2) was 63%, compared with the control group, there was a significant difference (P<0.01). The cell apoptosis rate was 16.53%±2.89% in the CONTROL group. The cell apoptosis rate was 22.9%±1.85% in the RA 1 group, which was a significant increase compared with the CONTROL group (P<0.01). The apoptotic rate of the NAM 200 group was 9.23%±1.39%, which was a significant decrease compared with NA 1 group (P<0.01). The apoptosis rate of the NAM 200+RA 1 group was 14.9%±7.67%, which was a significant decrease compared with the RA 1 group (P<0.01).@*Conclusion@#NAM can prevent cleft palate. 40 mg/kg nicotinamide during pregnancy is an effective concentration for the prevention of RA-induced cleft palate. The mechanism by which NAM prevents cleft palate may be that NAM inhibits RA-induced apoptosis of MEPM cells.

8.
Acta Pharmaceutica Sinica B ; (6): 709-721, 2023.
Article in English | WPRIM | ID: wpr-971716

ABSTRACT

The cofactor nicotinamide adenine dinucleotide (NAD+) plays a key role in a wide range of physiological processes and maintaining or enhancing NAD+ levels is an established approach to enhancing healthy aging. Recently, several classes of nicotinamide phosphoribosyl transferase (NAMPT) activators have been shown to increase NAD+ levels in vitro and in vivo and to demonstrate beneficial effects in animal models. The best validated of these compounds are structurally related to known urea-type NAMPT inhibitors, however the basis for the switch from inhibitory activity to activation is not well understood. Here we report an evaluation of the structure activity relationships of NAMPT activators by designing, synthesising and testing compounds from other NAMPT ligand chemotypes and mimetics of putative phosphoribosylated adducts of known activators. The results of these studies led us to hypothesise that these activators act via a through-water interaction in the NAMPT active site, resulting in the design of the first known urea-class NAMPT activator that does not utilise a pyridine-like warhead, which shows similar or greater activity as a NAMPT activator in biochemical and cellular assays relative to known analogues.

9.
Journal of Zhejiang University. Science. B ; (12): 172-184, 2023.
Article in English | WPRIM | ID: wpr-971478

ABSTRACT

Auditory neuropathy spectrum disorder (ANSD) represents a variety of sensorineural deafness conditions characterized by abnormal inner hair cells and/or auditory nerve function, but with the preservation of outer hair cell function. ANSD represents up to 15% of individuals with hearing impairments. Through mutation screening, bioinformatic analysis and expression studies, we have previously identified several apoptosis-inducing factor (AIF) mitochondria-associated 1 (AIFM1) variants in ANSD families and in some other sporadic cases. Here, to elucidate the pathogenic mechanisms underlying each AIFM1 variant, we generated AIF-null cells using the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and constructed AIF-wild type (WT) and AIF-mutant (mut) (p.‍T260A, p.‍R422W, and p.‍R451Q) stable transfection cell lines. We then analyzed AIF structure, coenzyme-binding affinity, apoptosis, and other aspects. Results revealed that these variants resulted in impaired dimerization, compromising AIF function. The reduction reaction of AIF variants had proceeded slower than that of AIF-WT. The average levels of AIF dimerization in AIF variant cells were only 34.5%‍‒‍49.7% of that of AIF-WT cells, resulting in caspase-independent apoptosis. The average percentage of apoptotic cells in the variants was 12.3%‍‒‍17.9%, which was significantly higher than that (6.9%‍‒‍7.4%) in controls. However, nicotinamide adenine dinucleotide (NADH) treatment promoted the reduction of apoptosis by rescuing AIF dimerization in AIF variant cells. Our findings show that the impairment of AIF dimerization by AIFM1 variants causes apoptosis contributing to ANSD, and introduce NADH as a potential drug for ANSD treatment. Our results help elucidate the mechanisms of ANSD and may lead to the provision of novel therapies.


Subject(s)
Humans , Apoptosis Inducing Factor/metabolism , NAD/metabolism , Dimerization , Apoptosis
10.
Chinese Critical Care Medicine ; (12): 646-650, 2022.
Article in Chinese | WPRIM | ID: wpr-956026

ABSTRACT

Objective:To investigate the protective effect of nicotinamide phosphoribosyltransferase (NAMPT) on abdominal aortic aneurysm by delaying the senescence of aortic vascular smooth muscle cells (VSMC).Methods:The primary VSMC cells from normal and patients with abdominal aortic aneurysm were cultured by tissue adherence method. Cells were divided into normal human-derived VSMC group (Ctrl-VSMC group), abdominal aortic aneurysm patient-derived VSMC group (AAA-VSMC group), and angiotensinⅡ(AngⅡ) in vitro abdominal aortic aneurysm model group (AngⅡ-VSMC group, 100 nmol/L AngⅡ treated normal human-derived VSMC for 48 hours), AngⅡ+P7C3 group and AAA+P7C3 group after NAMPT agonist P7C3 intervention (adding 5 μmol/L P7C3 on the basis of AngⅡ-VSMC group and AAA-VSMC group, respectively). Immunofluorescence staining was used to identify VSMC; cell proliferation-associated antigen Ki67 staining was used to detect cell proliferation; senescence associated β-galactosidase (SA-β-gal) staining was used to detect cell senescence in each group; Western blotting was used to detect the protein expression levels of senescence-related proteins p21, p16 and NAMPT in each group. Results:Compared with the Ctrl-VSMC group, the positive rate of SA-β-gal staining and the expression levels of senescence-related proteins p21 and p16 in the AAA-VSMC group and AngⅡ-VSMC group were significantly increased [SA-β-gal staining positive rate: (74.1±4.4)%, (68.6±5.5)% vs. (36.8±10.3)%, p21/GAPDH: 0.61±0.07, 0.51±0.03 vs. 0.31±0.03, p16/GAPDH: 0.77±0.03, 0.72±0.06 vs. 0.33±0.26, all P < 0.01]. However, the expression of NAMPT was significantly decreased (NAMPT/GAPDH: 0.88±0.07, 0.79±0.14 vs. 1.29±0.02, both P < 0.01). Compared with the AngⅡ-VSMC group, the positive rate of SA-β-gal staining and the expressions levels of senescence-related proteins p21 and p16 in the AngⅡ+P7C3 group were significantly lower [SA-β-gal staining positive rate: (49.1±3.2)% vs. (68.6±5.5)%, p21/GAPDH: 0.35±0.06 vs. 0.51±0.03, p16/GAPDH: 0.47±0.08 vs. 0.72±0.06, all P < 0.05], while the expression of NAMPT was significantly increased (NAMPT/GAPDH: 1.15±0.06 vs. 0.79±0.14, P < 0.01). Compared with the AAA-VSMC group, the positive rate of SA-β-gal staining and the expression levels of senescence-related proteins p21 and p16 in the AAA+P7C3 group were significantly lower [SA-β-gal staining positive rate: (54.1±6.0)% vs. (74.1±4.4)%, p21/GAPDH: 0.38±0.02 vs. 0.61±0.07, p16/GAPDH: 0.50±0.13 vs. 0.77±0.03, all P < 0.05], but the expression of NAMPT was significantly increased (NAMPT/GAPDH: 1.25±0.28 vs. 0.88±0.07, P < 0.01). Conclusion:NAMPT agonist P7C3 can delay the senescence of VSMC and play a protective role in abdominal aortic aneurysm.

11.
Chinese Journal of Experimental Ophthalmology ; (12): 1141-1148, 2022.
Article in Chinese | WPRIM | ID: wpr-990790

ABSTRACT

Objective:To investigate the role of nicotinamide (NIC) in the differentiation of neural crest cells from human embryonic stem cells (hESCs), and lay the foundation for the induction of hESC-derived corneal endothelial cells.Methods:hESCs line H1 cultured for 5-7 days was used for induction.According to the different components of the neural crest induction medium, cells were assigned into different groups for 7-days induction, including group treated without NIC cultured in induction medium only, group treated with NIC cultured in induction medium containing 10 mmol/L NIC, NIC+ resveratrol (Res) group cultured in induction medium containing 10 mmol/L NIC and 10 μmol/L Res and Sirtinol group cultured in induction medium containing 10 μmol/L Sirtinol.Res and Sirtinol were used as SIRT1 activity agonist and inhibitor, respectively.The relative mRNA expression levels of hESCs and neural crest cell markers were detected by real-time fluorescence quantitative PCR at 1, 3, 5 and 7 days during the induction.The expression of neural crest cells markers after 7 days of induction was assayed by immunofluorescence staining.The induction efficiency of NIC and the effect of SIRT1 regulation on human natural killer 1 (HNK-1) positive cells expression were evaluated through flow cytometry analysis of percentages of nerve growth factor receptor (P75) and HNK-1 + cells. Results:Compared with the group treated without NIC, the mRNA expressions of totipotent genes octamer transcription factor 4 (OCT4) and homeodomain proteins (NANOG) were significantly decreased, and the mRNA expression levels of neural crest cell markers P75, HNK-1, SRY-related HMG box (SOX) 9 and SOX10 were significantly increased in the group treated with NIC after 5 days of induction (all at P<0.05). In the group treated without NIC, P75 was weakly expressed, and HNK-1 was sporadically expressed, and transcription factor AP-2β (AP-2β) and paired-like homeodomain transcription factor 2 (PITX2) were not detected.In the group treated with NIC, P75, HNK-1, AP-2β and PITX2 were strongly expressed.The proportion of P75 + HNK-1 + cells and P75 + cells were both significantly higher in the group treated with NIC than without NIC ( t=8.481, P=0.001; t=2.987, P=0.041). The percentage of HNK-1 + cells in groups treated without and with NIC, NIC+ Res group and Sirtinol group were (34.267±12.522)%, (89.633±1.358)%, (64.667±6.429)% and (86.300±3.460)%, respectively, with a statistically significant overall difference ( F=36.799, P<0.001). The proportion of HNK-1 + cells in NIC+ Res group was significantly lower than that in the groups treated with NIC and Sirtinol (all at P<0.05). Conclusions:NIC promotes the differentiation of hESCs-derived neural crest cells by inhibiting the activity of SIRT1 to enhance the expression of HNK-1.NIC treatment may provide a new strategy for source of seed cells in the treatment of neural crest cell-related diseases, such as corneal endothelial transplantation.

12.
São Paulo; s.n; s.n; 2022. 86 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1378701

ABSTRACT

Responsável por milhões de óbitos anuais e um grande custo para a saúde pública, o câncer é a segunda maior causa de mortes no mundo. Dentre seus diversos tipos, o câncer de pulmão, além da alta incidência, é um dos mais letais. A exposição a substâncias tóxicas provenientes da combustão de matéria orgânica, assim como o consumo de cigarro, são os principais responsáveis pela alta incidência de câncer de pulmão. Dentre estas substâncias, está o benzo[α]pireno (B[α]P), um carcinógeno completo, ou seja, capaz de iniciar e promover o processo de carcinogênese. Resultados anteriores obtidos pelo grupo demonstraram que células BEAS-2B expostas a 1 µM de B[α]P apresentaram alterações das concentrações de metabólitos intracelulares, indução de estresse redox e hipermetilação do DNA. A exposição a 1 µM de nicotinamida ribosídeo (NR), um dos precursores de NAD+, foi capaz de proteger as células BEAS-2B contra a transformação induzida por B[α]P, além de impedir totalmente que células não expostas a B[α]P formassem colônias em soft-agar. A utilização da proteômica neste trabalho permitiu verificar a abundância das proteínas nos quatro diferentes grupos de exposição: Controle, B[α]P, B[α]P + NR e NR. Após 120 h de exposição as células foram coletadas, as proteínas extraídas e preparadas para análise. Foram descobertas 3024 proteínas posteriormente analisadas com o objetivo de elucidar vias possivelmente envolvidas na proteção contra o processo de transfomação maligna. Os grupos NR e Controle demonstram ser mais parecidos em relação ao seu conteúdo, enquanto os grupos B[α]P e B[α]P + NR foram mais semelhantes entre si. A análise de proteínas exclusivas revelou menos processos relacionados ao reparo de DNA no grupo tratado apenas com B[α]P quando comparado com B[α]P + NR. A análise estatística do total de proteínas utilizando o teste ANOVA (p < 0,05, N = 5) revelou 564 proteínas diferencialmente expressas entre os grupos. A clusterização nos permitiu observar a diferença na abundância de proteínas entre os quatro tratamentos. As proteínas estão envolvidas em funções como a regulação do metabolismo, resposta a estresse, transdução de sinal, regulação de expressão gênica e morte celular. Um dos clusters (cluster 1), contendo 59 proteínas, revelou poucos processos na análise de enriquecimento, mas as proteínas contidas nele apresentam funções como controle da divisão celular, apoptose e proteção ao estresse redox. Nele podemos observar que, no geral, o tratamento com B[α]P aumentou a abundância de algumas proteínas, o que foi revertido no grupo B[α]P + NR. O tratamento apenas com NR diminuiu a abundância das proteínas contidas nesse cluster. Outro cluster (cluster 4) apresentou 51 proteínas de abundância diminuída durante a exposição ao B[α]P, o que se reverteu no grupo B[α]P + NR. As proteínas desse cluster estão envolvidas em etapas importantes da via glicolítica, de crescimento, adesão, migração e invasão celular. Apesar de ser descrito que a exposição a NR pode aumentar a eficiência do reparo de DNA, os resultados apresentados nesse trabalho indicam que o efeito protetor pode estar relacionado com a modulação do ciclo celular ou alterações na adesão celular


Responsible for millions of annual deaths and a great health expense, cancer is the second leading cause of death in the world. Among its many types, lung cancer, besides its high incidence, is also one of the most lethal. Exposure to toxic substances resulting from the combustion of organic matter, as well as cigarette consumption, are the mainly responsible for the high incidence of lung cancer. One of these substances is benzo[α]pyrene (B[α]P), a complete carcinogen, able to initiate and promote the carcinogenesis process. Results obtained previously demonstrated that BEAS-2B cells exposed to 1 µM BaP presented alterations in the levels of intracellular metabolites, induction of oxidative stress, and hypermethylation of DNA. The exposure to 1 µM nicotinamide riboside (NR), one of the precursors of NAD+, was able to protect BEAS-2B cells against the transformation induced by B[α]P, moreover, it also totally prevented the colonies formation on soft agar in cells not exposed to B[α]P. The use of proteomics allowed us to verify the abundance of proteins in the four different exposure groups: Control, B[α]P, B[α]P + NR e NR. After 120h of exposure, the cells were collected followed by the extraction of the proteins. A total of 3024 proteins were identified and analyzed aiming to elucidate possible pathways involved in the protective effect against the malignant transformation induced by B[α]P. The NR and Control groups showed to be more similar, while B[α]P and B[α]P + NR were more similar. The analysis of exclusive proteins revealed fewer processes related to DNA repair in B[α]P when compared with B[α]P + NR. The statistical analysis of the total proteins using the ANOVA test (p <0.5, N = 5) revealed 564 proteins differentially expressed between the groups. The heatmap showed the difference in protein abundance between the four treatments. Proteins are involved in functionssuch asthe regulation of metabolism, stress response, signal transduction, regulation of gene expression, and cell death. One of the clusters (cluster 1), containing 59 proteins, revealed a few processes in the enrichment analysis, but the proteins contained in it have functions such as control of cell division, apoptosis, and protection from redox stress. It is possible to observe, in general, treatment with B[α]P increased the abundance of some proteins, which was partially reversed in group B[α]P + NR. On the other hand, the NR treatment decreased the abundance of proteins contained in this cluster. Another cluster (cluster 4) showed 51 proteins of decreased abundance during exposure to B [α] P, which was partially reversed in group B[α]P + NR. The proteins in this cluster are involved in important stages of the glycolytic pathway, also in growth, adhesion, migration, and cell invasion. Although it has been described that exposure to NR can increase the efficiency of DNA repair, the results presented in this work indicate that the protective effect may be related to the modulation of the cell cycle or cell adehsion modifications


Subject(s)
Proteomics/classification , Tobacco Products/classification , Carcinogenesis , Neoplasms , Cells/classification , Analysis of Variance , Data Interpretation, Statistical , Cell Death , Niacinamide/agonists , Oxidative Stress , Lung Neoplasms/pathology
13.
Braz. J. Pharm. Sci. (Online) ; 58: e18768, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420407

ABSTRACT

Abstract In this study, we investigated the effects of polymers on the pharmaceutical cocrystal formation process. Ibuprofen (IBU) was selected as the active pharmaceutical ingredient (API), nicotinamide (NIC) and saccharin (SAC) as the cocrystal coformer (CCF), ethanol/water as the solvent, polyvinylpyrrolidone (PVP) and poly (ethylene glycol) (PEG) as the representative polymers. We prepared IBU-NIC and IBU-SAC cocrystals in ethanol-water cosolvent in the absence or presence of polymers. Cocrystal screening products were characterized by FTIR, DSC, PXRD, and HPLC. The results showed that the mixture of IBU and IBU-NIC cocrystal can be prepared in ethanol-water cosolvent without polymers. The addition of PVP facilitates the formation of pure IBU-NIC cocrystal; however, no cocrystal was formed in PEG solutions. SAC could not cocrystallize with IBU in the ethanol-water solvent in the absence of polymers. Neither PVP nor PEG could facilitate the formation of the IBU-SAC cocrystal.

14.
Organ Transplantation ; (6): 618-2022.
Article in Chinese | WPRIM | ID: wpr-941483

ABSTRACT

Objective To evaluate the effect and mechanism of nicotinamide mononucleotide (NMN) on ischemia-reperfusion injury (IRI) induced by donor liver after cardiac death in rat models. Methods Rat models of orthotopic liver transplantation were established by "magnetic ring + double cuff" method. SD rats were randomly divided into the sham operation group (Sham group), orthotopic liver transplantation group (OLT group), NMN treatment + orthotopic liver transplantation group (NMN group), NMN+sirtuin-3 (Sirt3) inhibitor (3-TYP) + orthotopic liver transplantation group (NMN+3-TYP group), respectively. Pathological changes and hepatocyte apoptosis of the rats were observed in each group. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were determined. Superoxide dismutase (SOD) and malondialdehyde (MDA) contents in liver tissues were detected. The expression levels of Sirt3, microtubule-associated protein 1 light chain 3 (LC3)Ⅱ, PTEN-induced putative kinase 1 (PINK1), Parkin and translocase of the outer mitochondrial membrane 20 (TOMM20) in liver tissues were measured. Postoperative survival of the rats in each group was analyzed. Results Compared with the Sham group, serum ALT and AST levels were higher in the OLT group. Compared with the OLT group, the levels of ALT and AST were decreased in the NMN group. Compared with the NMN group, the levels of ALT and AST were increased in the NMN +3-TYP group (all P < 0.05). The liver tissue structure of rats in the Sham group was basically normal. In the OLT group, pathological changes, such as evident congestion, vacuolar degeneration and hepatocyte necrosis, were observed in the liver tissues. Compared with the Sham group, Suzuki score and apoptosis rate were higher in the OLT group. Suzuki score and apoptosis rate in the NMN group were lower than those in the OLT group. Suzuki score and apoptosis rate in the NMN+3-TYP group were higher compared with those in the NMN group (all P < 0.05). Compared with the Sham group, the SOD content was decreased, whereas the MDA content was increased in the OLT group. Compared with the OLT group, the SOD content was increased, whereas the MDA content was decreased in the NMN group. Compared with the NMN group, the SOD content was decreased, whereas the MDA content was increased in the NMN+3-TYP group (all P < 0.05). Compared with the Sham group, the relative expression levels of Sirt3 and TOMM20 proteins were down-regulated, whereas those of PINK1, Parkin and LC3Ⅱproteins were up-regulated in the OLT group. Compared with the OLT group, the relative expression levels of Sirt3, PINK1, Parkin and LC3Ⅱproteins were up-regulated, whereas that of TOMM20 protein was down-regulated in the NMN group. Compared with the NMN group, the relative expression levels of PINK1, Parkin and LC3Ⅱproteins were down-regulated, whereas that of TOMM20 protein was up-regulated in the NMN+3-TYP group (all P < 0.05). In the Sham group, the 7 d survival rate of rats was 100%, 50% in the OLT group, 75% in the NMN group and 58% in the NMN+3-TYP group, respectively. Conclusions NMN may enhance the antioxidative capacity of the liver, induce PINK1/Parkin-mediated mitochondrial autophagy, and alleviate IRI of the liver by up-regulating Sirt3, thereby playing a protective role in the donor liver after cardiac death.

15.
Chinese Journal of General Practitioners ; (6): 978-980, 2022.
Article in Chinese | WPRIM | ID: wpr-957926

ABSTRACT

The clinical data of 14 patients with niacin deficiency diagnosed and treated in Department of Dermatology, Affiliated Hospital of Jining Medical College from 2012 to 2021 were retrospectively analyzed. There were 11 males and 3 females aged 26-65 years. The etiological factors were alcoholism in 8 cases, gastrointestinal disease in 3 cases, medication history in 1 case, and unknown etiology in 2 cases.Patients had typical skin lesions, 1 case also had both digestive system and nervous system symptoms, and 3 cases had combined digestive system symptoms and 2 cases had neurological symptoms. All patients were systematically treated with oral nicotinamide and vitamin B complex, and also with topical drugs; and they all improved after 14-52 days of treatment. During regular follow-up, 2 cases of alcoholics and 1 case with diarrhea had recurrence. It is suggested that the typical clinical triad of niacin deficiency is uncommon, and the diagnosis is based on the medical history, clinical manifestations and relevant laboratory test, and the treatment with nicotinamide and vitamin B complex is usually effective; alcoholism is the main cause in male patients and is prone to recurrence.

16.
Arq. neuropsiquiatr ; 79(9): 789-794, Sept. 2021. tab
Article in English | LILACS | ID: biblio-1345328

ABSTRACT

Abstract Background: Migraines are headaches caused by changes in the trigeminovascular metabolic pathway. Migraine headache attacks are associated with neurovascular inflammation, but their pathophysiological mechanisms have not been fully explained. Objective: To investigate the relationship between serum vaspin, visfatin, chemerin and interleukin-18 (IL-18) levels and the frequency of attacks in migraine headache. Methods: Three groups were established: migraine with aura (n = 50), migraine without aura (n = 50) and control group (n = 50). The migraine diagnosis was made in accordance with the International Classification of Headache Disorders-III beta diagnostic criteria. The analyses on serum vaspin, visfatin, chemerin and IL-18 levels were performed using the enzyme-linked immunosorbent assay method. Results: The serum vaspin, visfatin, chemerin and IL-18 levels were found to be significantly higher in the migraine patients than in the control group (p < 0.01). No statistically significant differences in serum vaspin, visfatin, chemerin and IL-18 levels were found among the migraine patients during attacks or in the interictal period (p>0.05). The serum visfatin and chemerin levels of the migraine patients were positively correlated with their serum IL-18 levels (p < 0.01), while their serum chemerin and visfatin levels were positively correlated with their serum vaspin levels (p < 0.05). Conclusions: This study showed that these biomarkers may be related to migraine pathogenesis. Nonetheless, we believe that more comprehensive studies are needed in order to further understand the role of vaspin, visfatin, chemerin and IL-18 levels in the pathophysiology of migraine headaches.


Resumo Introdução: A migrânea é causada por alterações nas vias metabólicas do sistema trigeminovascular. Crises de migrânea estão associadas à inflamação neurovascular, mas seus mecanismos patofisiológicos ainda não são totalmente explicados. Objetivo: Investigar a relação entre níveis séricos de vaspina, visfatina, quemerina e interleucina-18 (IL-18) e a frequência de crises de migrânea. Métodos: Três grupos foram formados: migrânea com aura (n = 50), migrânea sem aura (n = 50) e grupo controle (n = 50). A migrânea foi diagnosticada de acordo com os critérios da Classificação Internacional das Cefaleias (ICHD-III). As análises dos níveis séricos de vaspina, visfatina, quemerina e IL-18 foram realizadas utilizando-se o método imunoenzimático (ELISA). Resultados: Os níveis séricos de vaspina, visfatina, quemerina e interleucina-18 (IL-18) foram significativamente mais elevados em pacientes com migrânea do que no grupo controle (p < 0.01). Nenhuma diferença estatisticamente significativa foi observada nos níveis séricos de vaspina, visfatina, quemerina e interleucina-18 (IL-18) entre os pacientes com migrânea durante crises ou no período interictal (p>0,05). Os níveis séricos de visfatina e quemerina em pacientes com migrânea se correlacionaram positivamente com os níveis séricos de IL-18 (p < 0,01), ao passo que os níveis séricos de quemerina e visfatina se correlacionaram positivamente com os níveis séricos de vaspina (p < 0,05). Conclusões: Este estudo demonstrou que estes biomarcadores podem estar relacionados à patogênese da migrânea. Contudo, acreditamos que estudos mais abrangentes são necessários a fim de melhor compreendermos o papel dos níveis de vaspina, visfatina, quemerina e IL-18 na fisiopatologia da migrânea.


Subject(s)
Humans , Insulin Resistance , Serpins , Migraine Disorders , Chemokines , Interleukin-18 , Nicotinamide Phosphoribosyltransferase
17.
São Paulo; s.n; s.n; 2021. 275 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1379262

ABSTRACT

A alta incidência, prevalência e mortalidade do câncer de pulmão demonstram a necessidade de se identificar alterações moleculares envolvidas na carcinogênese pulmonar. Nesse contexto, a reprogramação do metabolismo energético é uma marca emergente do câncer. Há evidências de que benzo[a]pireno (B[a]P), um conhecido carcinógeno humano, induz alterações metabólicas via modificação da função mitocondrial tanto in vitro quanto in vivo. Uma vez que as alterações metabólicas não são somente o resultado da transformação celular, mas podem também ter papel na etiologia do câncer ao modular o epigenoma e a expressão de genes, intervir no metabolismo de células em processo de transformação pode contribuir para desvendar mecanismos de carcinogênese e revelar alvos para quimioprevenção. A fim de investigar a relação entre alterações no metabolismo celular, marcas epigenéticas e transformação celular, implementamos um modelo de tumorigênese (avaliada pela formação de colônias em soft-agar) induzida por B[a]P em células epiteliais bronquiais humanas imortalizadas (linhagem BEAS-2B) crescidas em monocamada (2D). O modelo possibilitou a observação de alterações precoces do metabolismo celular. Levando em consideração que o nucleotídeo NAD+ regula as atividades de diversas vias moleculares importantes para a sobrevivência, diferenciação, crescimento e morte celular, e que suas concentrações foram rapidamente diminuídas após exposição a B[a]P, decidimos suplementar as células BEAS-2B com nicotinamida ribosídeo (NR), um precursor intracelular de NAD+, concomitantemente à exposição a B[a]P. NR em baixa concentração no meio de cultura (1 µM) induziu estresse energético em células BEAS-2B expostas a B[a]P (1 µM) ao longo do período de uma semana de co-incubação, aumentando seletivamente a taxa de apoptose dessas células. Protegeu contra a transformação celular induzida por B[a]P e impediu completamente a formação espontânea de colônias das células controle em soft-agar. Usamos uma abordagem metabolômica direcionada a alvos específicos ("targeted metabolomics") desenvolvida no grupo para quantificar metabólitos conhecidamente alterados no câncer. Os dados indicam que NR diminui o metabolismo de glutamina nas células expostas a B[a]P, o que ocorre em paralelo com a diminuição das concentrações de citrato e aspartato, aumento da razão malato/aspartato, diminuição das razões ATP/AMP e ATP/ADP e aumento das concentrações de adenosina. As alterações se enquadram na hipótese de inibição do shuttle malato-aspartato, cuja atividade é necessária para a sobrevivência de células que sofrem o efeito Warburg (alta dependência de NADH citosólico para geração de ATP). NR adicionalmente protegeu as células contra o estresse redox, a hipermetilação do DNA e o aumento da atividade de sirtuína 1 (SIRT1) induzidos por B[a]P, além de aumentar a expressão de genes supressores tumorais (E-caderina, PTEN, semaforina 3F, p16(ink4a)) que podem ser reprimidos por CtBP (proteína ligante de NADH que atua como sensor redox e traduz a condição metabólica da célula para o controle da expressão gênica). Foi ainda observada maior atividade de PARP1 nas células expostas a B[a]P+NR em comparação aos demais grupos. Os resultados obtidos mostram que NR se contrapõe a ou exacerba alterações bioquímicas induzidas por B[a]P, diminuindo a chance de transformação carcinogênica das células BEAS-2B. Estudos em modelos mais complexos, como micro tecidos in vitro, são necessários para a confirmação do efeito quimiopreventivo da NR e alterações bioquímicas subjacentes


Tese de DoutoradoDOIhttps://doi.org/10.11606/T.9.2021.tde-05082021-095853DocumentoTese de DoutoradoAutorCordeiro, Everson Willian Fialho (Catálogo USP)Nome completoEverson Willian Fialho CordeiroE-mailE-mailUnidade da USPFaculdade de Ciências FarmacêuticasÁrea do ConhecimentoToxicologiaData de Defesa2021-04-08ImprentaSão Paulo, 2021OrientadorLoureiro, Ana Paula de Melo (Catálogo USP) Banca examinadoraLoureiro, Ana Paula de Melo (Presidente) Àvila, Daiana Silva de Meotti, Flavia Carla Silva, Eloiza Helena Tajara da Título em portuguêsModulação da concentração intracelular de NAD+ e seu efeito na tumorigênese induzida por benzo[a]pireno em células bronquiais epiteliais humanasPalavras-chave em portuguêsBenzo[a]pireno Câncer de pulmão Metabolismo energético Nicotinamida ribosídeo Resumo em portuguêsA alta incidência, prevalência e mortalidade do câncer de pulmão demonstram a necessidade de se identificar alterações moleculares envolvidas na carcinogênese pulmonar. Nesse contexto, a reprogramação do metabolismo energético é uma marca emergente do câncer. Há evidências de que benzo[a]pireno (B[a]P), um conhecido carcinógeno humano, induz alterações metabólicas via modificação da função mitocondrial tanto in vitro quanto in vivo. Uma vez que as alterações metabólicas não são somente o resultado da transformação celular, mas podem também ter papel na etiologia do câncer ao modular o epigenoma e a expressão de genes, intervir no metabolismo de células em processo de transformação pode contribuir para desvendar mecanismos de carcinogênese e revelar alvos para quimioprevenção. A fim de investigar a relação entre alterações no metabolismo celular, marcas epigenéticas e transformação celular, implementamos um modelo de tumorigênese (avaliada pela formação de colônias em soft-agar) induzida por B[a]P em células epiteliais bronquiais humanas imortalizadas (linhagem BEAS-2B) crescidas em monocamada (2D). O modelo possibilitou a observação de alterações precoces do metabolismo celular. Levando em consideração que o nucleotídeo NAD+ regula as atividades de diversas vias moleculares importantes para a sobrevivência, diferenciação, crescimento e morte celular, e que suas concentrações foram rapidamente diminuídas após exposição a B[a]P, decidimos suplementar as células BEAS-2B com nicotinamida ribosídeo (NR), um precursor intracelular de NAD+, concomitantemente à exposição a B[a]P. NR em baixa concentração no meio de cultura (1 µM) induziu estresse energético em células BEAS-2B expostas a B[a]P (1 µM) ao longo do período de uma semana de co-incubação, aumentando seletivamente a taxa de apoptose dessas células. Protegeu contra a transformação celular induzida por B[a]P e impediu completamente a formação espontânea de colônias das células controle em soft-agar. Usamos uma abordagem metabolômica direcionada a alvos específicos ("targeted metabolomics") desenvolvida no grupo para quantificar metabólitos conhecidamente alterados no câncer. Os dados indicam que NR diminui o metabolismo de glutamina nas células expostas a B[a]P, o que ocorre em paralelo com a diminuição das concentrações de citrato e aspartato, aumento da razão malato/aspartato, diminuição das razões ATP/AMP e ATP/ADP e aumento das concentrações de adenosina. As alterações se enquadram na hipótese de inibição do shuttle malato-aspartato, cuja atividade é necessária para a sobrevivência de células que sofrem o efeito Warburg (alta dependência de NADH citosólico para geração de ATP). NR adicionalmente protegeu as células contra o estresse redox, a hipermetilação do DNA e o aumento da atividade de sirtuína 1 (SIRT1) induzidos por B[a]P, além de aumentar a expressão de genes supressores tumorais (E-caderina, PTEN, semaforina 3F, p16(ink4a)) que podem ser reprimidos por CtBP (proteína ligante de NADH que atua como sensor redox e traduz a condição metabólica da célula para o controle da expressão gênica). Foi ainda observada maior atividade de PARP1 nas células expostas a B[a]P+NR em comparação aos demais grupos. Os resultados obtidos mostram que NR se contrapõe a ou exacerba alterações bioquímicas induzidas por B[a]P, diminuindo a chance de transformação carcinogênica das células BEAS-2B. Estudos em modelos mais complexos, como micro tecidos in vitro, são necessários para a confirmação do efeito quimiopreventivo da NR e alterações bioquímicas subjacentes.Título em inglêsModulation of intracellular concentration of NAD+ and its effect on benzo[a]pyrene-induced tumorigenesis in human epithelial bronchial cellsPalavras-chave em inglêsBenzo[a]pyrene Energetic metabolism Lung cancer Nicotinamide riboside Resumo em inglêsThe high incidence, prevalence and mortality of lung cancer demonstrates the need to identify molecular changes involved in lung carcinogenesis. In this context, the reprogramming of energy metabolism is an emerging brand of cancer. There is evidence that benzo[a]pyrene (B[a]P), a known human carcinogen, induces metabolic changes via modification of mitochondrial function both in vitro and in vivo. Since metabolic changes are not only the result of cell transformation, but can also play a role in the etiology of cancer by modulating the epigenome and gene expression, intervening in the metabolism of cells in the process of transformation can contribute to unravel mechanisms of carcinogenesis and reveal targets for chemoprevention. In order to investigate the relationship between changes in cell metabolism, epigenetic marks and cell transformation, we implemented a model of tumorigenesis (assessed by the formation of colonies on soft-agar) induced by B[a]P in immortalized human bronchial epithelial cells (BEAS-2B cell line human) grown in monolayer (2D). The model enabled the observation of early changes in cell metabolism. Taking into account that the NAD+ nucleotide regulates the activities of several molecular pathways important for cell survival, differentiation, growth and death, and that their concentrations were rapidly decreased after exposure to B[a]P, we decided to supplement the BEAS-2B cells with nicotinamide riboside (NR), an intracellular precursor of NAD+, concomitantly with exposure to B[a]P. NR in low concentration in the culture medium (1 µM) induced energy stress in BEAS-2B cells exposed to B[a]P (1 µM) over the period of a week of co-incubation, selectively increasing the apoptosis rate of these cells. It protected against cell transformation induced by B[a]P and completely prevented the spontaneous formation of control cell colonies on soft-agar. We use a targeted metabolomics approach developed in the group to quantify metabolites known to be altered in cancer. The data indicate that NR decreases the glutamine metabolism in cells exposed to B[a]P, which occurs in parallel with the decrease in citrate and aspartate concentrations, increased malate/aspartate ratio, decreased ATP/AMP and ATP/ADP ratios and increased adenosine concentrations. The changes fit the hypothesis of inhibition of the malate-aspartate shuttle, whose activity is necessary for the survival of cells that suffer the Warburg effect (high dependence on cytosolic NADH for ATP generation). NR additionally protected cells against redox stress, DNA hypermethylation and increased B[a]P-induced sirtuin 1 (SIRT1) activity, in addition to increasing the expression of tumor suppressor genes (E-cadherin, PTEN, semaphorin 3F, p16 (ink4a)) that can be suppressed by CtBP (NADH-binding protein that acts as a redox sensor and translates the cell's metabolic condition to control gene expression). Higher PARP1 activity was also observed in cells exposed to B[a]P+NR compared to the other groups. The results obtained show that NR is opposed to or exacerbates biochemical changes induced by B[a]P, reducing the chance of carcinogenic transformation of BEAS-2B cells. Studies on more complex models, such as micro tissues in vitro, are necessary to confirm the chemopreventive effect of NR and underlying biochemical changes


Subject(s)
Niacinamide/adverse effects , Carcinogenesis/drug effects , Lung Neoplasms/pathology , In Vitro Techniques/methods , DNA , Chemoprevention/classification , Energy Metabolism , Epithelial Cells/classification
18.
Journal of Pharmaceutical Practice ; (6): 13-16, 2021.
Article in Chinese | WPRIM | ID: wpr-862480

ABSTRACT

Objective To investigate the effects of Nicotinamide mononucleotide (NMN) on ulcerative colitis induced by dextran sulfate sodium (DSS) in mice. Methods DSS-induced ulcerative colitis mice were used to evaluate the effects of NMN. After NMN administration, the survival time, weight, disease activity index (DAI), colon tissue length and pathological changes of colon tissue slices were observed. Results NMN did not cause significant changes in the survival time, weight, DAI, and intestinal morphology of ulcerative colitis mice. Conclusion NMN has no significant effect on DSS-induced ulcerative colitis mice.

19.
Chinese Journal of Anesthesiology ; (12): 1334-1337, 2021.
Article in Chinese | WPRIM | ID: wpr-933250

ABSTRACT

Objective:To evaluate the effect of nicotinamide mononucleotide (NMN) on neurogenesis decline in sleep-deprived infancy rats.Methods:Seventy-eight clean-grade healthy male Sprague-Dawley rats, aged 7 days, weighing 10-15 g, were divided into 3 groups ( n=26 each) using a random number table method: control group (group Con), sleep deprivation group (group SD) and sleep deprivation plus NMN group (group SD+ NMN). Sleep deprivation model was established by gentle stimulation method with a brush (10 h per day) for 14 consecutive days.NMN 500 mg/kg was intraperitoneally injected in group SD+ NMN, while the equal volume of aqua pura was given instead in Con and SD groups.5′-bromo-2′-deoxyuridine (BrdU) 100 mg/kg was intraperitoneally injected immediately after the end of sleep deprivation to label the new-born cells.At 24 h after completion of sleep deprivation, the stem cell pluripotency transcription factor (SOX2) and doublecortin (DCX) positive cells in the hippocampal DG region were counted using immunofluorescence and immunohistochemical methods, and positron emission tomography-computed tomography was used to observe the metabolism of 18F-fluorodeoxyglucose in the hippocampus.At 4 weeks after completion of sleep deprivation, the number of neuronal nuclei antigen (NeuN)/BrdU and glial fibrillary acid protein (GFAP)/BrdU positive cells in hippocampal DG region was recorded using immunofluorescence, and novel object recognition test was performed to evaluate the cognitive function. Results:Compared with group Con, the number of SOX2 and DCX positive cells was significantly reduced, the standard uptake value of glucose in the hippocampus was decreased, the number of NeuN/BrdU and GFAP/BrdU positive cells was reduced, and discrimination index in novel object recognition test was decreased in group SD ( P<0.05). Compared with group SD, the number of SOX2, DCX NeuN/BrdU and GFAP/BrdU positive cells was increased, the standard uptake value of glucose in the hippocampus was increased, and discrimination index in novel object recognition test was increased in group SD+ NMN ( P<0.05). Conclusion:Nicotinamide mononucleotide can promote neurogenesis, thus improving cognitive function, and the mechanism is related to increasing the metabolism of hippocampal glucose in sleep-deprived infancy rats.

20.
Journal of Pharmaceutical Practice ; (6): 134-137, 2021.
Article in Chinese | WPRIM | ID: wpr-875673

ABSTRACT

Objective To study the effect of nicotinamide mononucleotide (NMN) on the mortality of the lipopoly-saccharide (LPS)-induced endotoxic shock mouse model. Methods 10-week-old C57BL/6J male mice were randomly divided into groups, and were injected intraperitoneally (i.p.) with LPS (10 mg/kg) to induce endotoxic shock models. NMN was i.p. injected in three ways: (1) 0.5 h after modeling, doses of 10, 30, 100 and 300 mg/kg; (2) 0.5 h before modeling, doses of 30, 100, 300 and 600 mg/kg; or (3) 0.5 and 12 h after modeling, dose of 300 mg/kg each time. The death times of each group were recorded, and the survival curves were drawn. Results Compared with the solvent control group, NMN at different doses given 0.5 h after or before modeling didn’t improve the survival rate or delay the death time of endotoxic shock mice; But when given at 0.5 and 12 h 300 mg/kg after modeling, NMN accelerated the death of mice and increased the mortality of mice. NMN products by two manufacturers showed similar effects. Conclusion NMN has no therapeutic effect on LPS-induced endotoxic shock, and repeated administration of NMN after endotoxic shock will increase the mortality.

SELECTION OF CITATIONS
SEARCH DETAIL